MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Deep Learning Advances Super-Resolution Ultrasound Imaging

By MedImaging International staff writers
Posted on 23 Apr 2024
Print article
Image: The ultrasound image of a region of the brain showing strong microbubble activity from a nerve stimulation test (Photo courtesy of University of Illinois Urbana-Champaign)
Image: The ultrasound image of a region of the brain showing strong microbubble activity from a nerve stimulation test (Photo courtesy of University of Illinois Urbana-Champaign)

Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected into the bloodstream. These microbubbles, mere microns in size, are tracked using ultrasound waves that penetrate deep tissues, revealing the flow of blood and providing detailed images of the microvascular system. Despite its potential, the application of ULM in clinical diagnostics has been limited by its imaging speed. Speeding up the imaging process typically requires higher concentrations of microbubbles, complicating the post-processing of data. Researchers have now introduced a novel approach to enhance the practicality of ULM for clinical use by integrating advanced computational techniques in the post-processing pipeline.

Developed by researchers at the University of Illinois Urbana-Champaign (Urbana, IL, USA), this new technique, dubbed Localization with Context Awareness Ultrasound Localization microscopy (LOCA-ULM), leverages deep learning to improve the post-processing steps in ULM. The team has developed a simulation model using a generative adversarial network (GAN) to produce realistic microbubble signals. These signals are used to train a deep context-aware neural network called DECODE, designed to localize microbubbles more rapidly, accurately, and efficiently.

The innovative method not only enhances imaging performance and processing speed but also increases the sensitivity for functional ULM while offering superior in vivo imaging. Additionally, the technique improves computational and microbubble localization performance and is adaptable to different microbubble concentrations, marking a significant advancement in the field of medical imaging.

“I’m really excited about making ULM faster and better so that more people will be able to use this technology. I think deep learning-based computational imaging tools will continue to play a major role in pushing the spatial and temporal resolution limits of ULM,” said YiRang Shin, a graduate student at the University of Illinois Urbana-Champaign.

Related Links:
University of Illinois Urbana-Champaign

Gold Member
Electrode Solution and Skin Prep
Signaspray
Gold Member
Ultrasound System
FUTUS LE
Bladder Scanner
PBSV3.2
Ultrasonic Diagnostic System
K10

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more