MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Non-Invasive Ultrasound Imaging Device Diagnoses Risk of Chronic Kidney Disease

By MedImaging International staff writers
Posted on 27 Mar 2024
Print article
Image: The non-invasive diagnostic device is expected to advance the clinical management of chronic kidney disease (Photo courtesy of PolyU)
Image: The non-invasive diagnostic device is expected to advance the clinical management of chronic kidney disease (Photo courtesy of PolyU)

Managing chronic kidney disease (CKD) efficiently is imperative for public health, as it represents a progressive condition affecting 10% of the worldwide population. The path from CKD to end-stage renal disease (ESRD) often involves renal fibrosis, making early detection and continuous monitoring critical for effective treatment and prognosis. Correctly identifying patients at elevated risk for advancing renal fibrosis remains a complex task in clinical settings. Researchers have now created a computer-based diagnostic tool that combines ultrasound (US) imagery with specific clinical indicators to evaluate the risk of moderate-to-severe renal fibrosis progression in individuals with CKD.

By leveraging advanced health technology, this innovative diagnostic tool Smart-CKD (S-CKD) developed by researchers from the Hong Kong Polytechnic University (PolyU, Hong Kong) can improve CKD management and patient monitoring. S-CKD integrates three essential clinical parameters: the patient's age, the ultrasonic renal length, and the end-diastolic velocity in the interlobar renal artery, all obtainable through regular medical follow-ups. Utilizing machine learning, S-CKD achieves a diagnostic accuracy of 80%. Available as an online web-based tool and an offline document, S-CKD offers a convenient, real-time, non-invasive method for clinicians to assess renal fibrosis risk, thus guiding therapeutic decisions, patient counseling, and follow-up scheduling.

Additionally, the research group has developed a machine learning-based model using 2-D shear wave elastography (SWE) combined with CKD clinical data to assess renal fibrosis. Despite the advancements in ultrasound elastography for diagnosing renal fibrosis, the technique's effectiveness heavily relies on the operator's skill, posing challenges in settings with limited resources. S-CKD aims to facilitate the application of ultrasound elastography in various clinical environments, enabling accurate, low-cost risk stratification using data easily extracted from medical records and standard imaging assessments.

Further, the team has introduced an ultrasound radiomics analysis, progressing from clinical data to in-depth ultrasound image examination. Radiomics, a cutting-edge field, extracts a multitude of imaging features invisible to the human eye from medical images, building models for non-invasive renal fibrosis evaluations. This radiomics method combines ultrasound imaging with clinical data to create a diagnostic model visualized through a web-based calculator. Although current models require manual input from medical professionals, future efforts will explore artificial intelligence, including deep learning, to develop a fully automated diagnostic system.

“The implementation of S-CKD holds the potential to assist healthcare practitioners in tailoring medical judgments and optimizing post-treatment protocols for CKD patients,” said Prof. Michael Tin Cheung YING, Associate Head and Professor of Department of Health Technology and Informatics at PolyU. “By utilizing non-invasive medical imaging results and basic demographic data, this tool offers a cost-effective solution for guiding patient management, thereby contributing to notable clinical advantages.”

Related Links:
PolyU 

Gold Member
Ultrasound System
FUTUS LE
Gold Member
Electrode Solution and Skin Prep
Signaspray
Pencil Beam System
inus D DXA
Radiology System
Riviera SPV AT

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more