We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Outperforms Human Readers in Detecting Lung Nodules on X-Rays

By MedImaging International staff writers
Posted on 01 Feb 2024
Print article
Image: A new study tested a variety of AI algorithms head-to-head under similar conditions (Photo courtesy of 123RF)
Image: A new study tested a variety of AI algorithms head-to-head under similar conditions (Photo courtesy of 123RF)

Currently, over 150 artificial intelligence (AI)-based software products are available in the European market for radiology, with many addressing similar use cases. This makes it challenging for radiology departments to determine which software is most suitable for their needs. While software performance is a crucial factor in the procurement process, public data are scarce on the performance of these products. Clinical centers often lack the resources and personnel to thoroughly evaluate and compare multiple products before making a purchase. To address this issue, an initiative called Project AIR has been launched that aims to enhance market transparency for AI in radiology. Project AIR researchers have compiled a verified database of medical images for various clinical uses. This database allows for the comparative testing of multiple AI algorithms.

Now, in the first tests of the Project AIR concept, researchers discovered that out of seven AI algorithms trialed for detecting lung nodules in X-rays, four surpassed human readers in performance, while two algorithms for bone age prediction did not meet expectations. For testing the Project AIR concept, a team that included researchers from Radboud University (Nijmegen, the Netherlands) invited AI developers to participate. Between June 2022 and January 2023, nine products from eight vendors were validated: two for bone age prediction and seven for lung nodule assessment (one vendor participated in both categories). The team observed that the two algorithms for bone age analysis, Visiana, and Vuno, demonstrated excellent correlation with the reference standard, achieving r correlation coefficients of 0.987-0.989 (with 1 indicating perfect agreement). In lung nodule analysis, there was a more significant variation in performance, with human readers averaging an Area Under the Curve (AUC) of 0.81. The AI algorithms from Annalise.ai, Lunit, Milvue, and Oxipit showed superior performance, with AUCs of 0.90, 0.93, 0.86, and 0.88, respectively. The next tests of the Project AIR concept will focus on AI algorithms for fracture detection.

“We have shown the feasibility of the Project AIR methodology for external validation of commercial artificial intelligence (AI) products in medical imaging,” noted the researchers. “It is conceivable that in the future, radiology departments will require vendors to participate in transparent and comparative evaluations as a prerequisite for purchasing AI products.”

Related Links:
Radboud University

Gold Member
Ultrasound System
FUTUS LE
Gold Member
Electrode Solution and Skin Prep
Signaspray
Afterloader For Brachytherapy
Flexitron
Radiography System
ANTARIX II PLUS

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more