We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

3D X-Ray Imaging Technique to Significantly Improve Breast Cancer Detection

By MedImaging International staff writers
Posted on 20 Jul 2023
Print article
Image: A new X-ray imaging method could decisively improve breast cancer diagnostics (Photo courtesy of Freepik)
Image: A new X-ray imaging method could decisively improve breast cancer diagnostics (Photo courtesy of Freepik)

In 2020, breast cancer emerged as the most frequently diagnosed cancer globally, with over two million recorded cases. It represented 24.5% of cancer diagnoses in women and 15.5% of cancer-related deaths. In many developed nations, mammography screening programs serve as a key early detection strategy, contributing to reduced mortality rates. However, the complexity of reading mammograms, even for experts, presents a challenge. The low contrast of breast tissue under X-ray and the often unclear representation of the breast's complex interior by two-dimensional imaging complicate the process. Additionally, the mandatory compression of the breast for X-ray examination can cause discomfort or even pain, deterring some women from undergoing screenings. Now, researchers have successfully enhanced mammography, an X-ray imaging technique used for early-stage tumor detection, leading to significantly improved reliability and a less distressing experience for patients.

A research team that included scientists from the Paul Scherrer Institute (PSI, Aargau, Switzerland) has extended conventional computed tomography (CT) to yield significantly higher image resolution while maintaining the same radiation dose. This improvement could facilitate the earlier detection of small calcium deposits or microcalcifications, potential indicators of breast tumors, thus improving the survival prospects for affected women. The experts anticipate the swift clinical implementation of this X-ray phase contrast-based technique. Phase-contrast X-ray imaging improves tumor diagnostics by incorporating additional physical data. This allows for the utilization of an effect image creation, generally overlooked in conventional X-rays, that captures the information contained in signals produced when X-rays refract and scatter upon contact with biological tissue. This is due to electromagnetic waves, including X-rays and visible light, undergoing not only attenuation but also refraction and diffraction when traversing structures of varying densities. This information can be leveraged to enhance image contrast and resolution, enabling easier identification of minuscule objects.

The researchers employed grating interferometry (GI), a technique used to measure physical systems, for developing their method. In this approach, X-rays pass through not only the object under examination but also through three gratings with a line spacing of a few micrometers, making the additional information visible. The team has presented several images illustrating the superior resolution and contrast of GI computed tomography compared to traditional X-rays. The X-rays can originate from a standard source, delivering a radiation dose similar to conventional CT breast scans. Moreover, the new screening approach should increase patient comfort during the procedure. Patients can lie face down on a table with chest-area gaps while the shielded tomograph underneath rotates around the breasts to construct a three-dimensional image. The team aims to initiate clinical trials in collaboration with their clinical partners by the end of 2024, by which time they expect to have a prototype device ready for initial patient examinations.

“The phase-contrast X-rays reveal fine details of the tissue,” said Rahel Kubik-Huch, Director of the Department of Medical Services at Baden Cantonal Hospital (KSB) and Chief Physician for Radiology, who was involved in the research work. “This translational project is meant to explore the potential of this technique for detecting breast cancer in its early stages. We hope that one day our patients will be able to benefit from these advances.”

Related Links:
PSI 

Gold Member
Electrode Solution and Skin Prep
Signaspray
Gold Member
Ultrasound System
FUTUS LE
Wireless Flat Panel Detector
ExamVue 10" x 12" Glassless Substrate Wireless
Forensic Imaging System
EXERO-DR

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more