MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Point-of-Care AI for Chest X-Rays Accurately Classifies Optimal and Suboptimal Chest Radiographs

By MedImaging International staff writers
Posted on 11 Apr 2023
Print article
Image: New AI models are capable of differentiating optimal from suboptimal chest radiographs (Photo courtesy of Freepik)
Image: New AI models are capable of differentiating optimal from suboptimal chest radiographs (Photo courtesy of Freepik)

Chest radiographs (CXR) are the most common imaging test, accounting for nearly 40% of all imaging examinations. This popularity is due to their accessibility, practicality, low cost, and moderate sensitivity in diagnosing pulmonary, mediastinal, and cardiac issues. However, there is significant variability in CXR interpretation among radiologists. Higher quality images could lead to more consistent and reliable readings, but suboptimal CXRs can hinder the detection of critical findings. Now, radiologist-trained artificial intelligence (AI) models can accurately classify optimal and suboptimal CXRs, potentially enabling radiographers to repeat poor-quality scans when necessary.

Radiologists at the Massachusetts General Hospital and Harvard Medical School (Boston, MA, USA) have developed AI models that can distinguish between optimal and suboptimal CXRs and provide feedback on the reasons for suboptimality. This feedback, offered at the front end of radiographic equipment, could prompt immediate repeat acquisitions when needed. The radiologists utilized an AI tool-building platform to create their model that allows clinicians to develop AI models without prior expertise in data sciences or computer programming. This software could help reduce variability among radiologists.

The development of the model involved 3,278 CXRs from five different sites. A chest radiologist assessed the images and identified the reasons for their suboptimality. These anonymized images were then uploaded to an AI server application for training and testing. The model's performance was evaluated based on its area under the curve (AUC) for distinguishing between optimal and suboptimal images. Reasons for suboptimality included missing anatomy, obscured thoracic anatomy, inadequate exposure, low lung volume, or patient rotation. The AUCs for accuracy in each category ranged from .87 to .94.

The model demonstrated a consistent performance across age groups, sexes, and various radiographic projections. Importantly, the categorization of suboptimality is not time-consuming and it takes less than a second per radiograph per category to classify an image as optimal or suboptimal, according to the experts. The team has suggested that this could speed up the repeat process as well as streamline manual audits, which are typically laborious and time-consuming.

“An automated process using the trained AI models can help track such information in near time and provide targeted, large-scale feedback to the technologists and the department on specific suboptimal causes,” the group explained, adding that in the long-term this feedback could reduce repeat rates, saving time, money and unnecessary radiation exposures.

Related Links:
Mass General

Gold Member
Ultrasound System
FUTUS LE
Gold Member
Electrode Solution and Skin Prep
Signaspray
Wireless Flat Panel Detector
ExamVue 10" x 12" Glassless Substrate Wireless
Afterloader For Brachytherapy
Flexitron

Print article
Radcal

Channels

MRI

view channel
Image: PET/MRI can accurately classify prostate cancer patients (Photo courtesy of 123RF)

PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients

The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more

Nuclear Medicine

view channel
Image: The new SPECT/CT technique demonstrated impressive biomarker identification (Journal of Nuclear Medicine: doi.org/10.2967/jnumed.123.267189)

New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access

The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more

General/Advanced Imaging

view channel
Image: The Tyche machine-learning model could help capture crucial information. (Photo courtesy of 123RF)

New AI Method Captures Uncertainty in Medical Images

In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more