Accelerated MRI with AI Image Reconstruction Nearly Halves Scan Times (MI-MRI)
By MedImaging International staff writers Posted on 20 Jan 2023 |

Artificial intelligence (AI) can reconstruct coarsely-sampled, rapid magnetic resonance imaging (MRI) scans into high-quality images with the same diagnostic value as those generated using traditional MRI, according to a new study. Reconstructing MRI scans with AI, which is four times faster than standard scans, has the potential to expand MRI access to more patients and lower appointment wait times, the study says.
The study is part of the fastMRI initiative established by NYU Langone Health (New York, NY, USA) and Meta AI Research (New York, NY, USA) (formerly Facebook) in 2018. This initiative, aimed at using AI to make MRI faster, led to the joint development of an AI model by Meta AI researchers and NYU Langone imaging scientists and radiologists. It also created the largest-ever publicly-available collection of raw MRI data, which has been used globally by scientists and engineers.
In an earlier “proof-of-principle” study, the NYU Langone team had simulated accelerated scans by removing about three-fourths of the raw data acquired by conventional, slow MRI scans. The fastMRI AI model then generated images that matched those created from the slower scans. In the new study, the researchers performed accelerated scans with only one-fourth of the total data and used the AI model to “fill in” the missing information, similar to the way the brain builds images by filling in missing visual information from local context and previous experiences. In both the studies, the team found that fastMRI scans were as accurate as traditional scans and offered better quality.
In the new study, a total of 170 participants received a diagnostic knee MRI using a conventional MRI protocol, followed by an accelerated AI protocol between January 2020 and February 2021. All the examinations were reviewed by six musculoskeletal radiologists, who searched for signs of meniscal or ligament tears and bone marrow or cartilage abnormalities. The radiologists evaluating the scans were not aware which images were reconstructed with AI. In order to limit the potential for recall bias, the evaluations of the standard images and AI-accelerated images were spaced at least four weeks apart. The radiologists judged the AI-reconstructed images as diagnostically equivalent to the conventional images for detecting tears or abnormalities. They also found that the overall image quality of the accelerated scans was significantly better than the conventional images.
FastMRI does not require special equipment, according to the researchers. Technicians can program standard MRI machines to gather less data than is usually required. The fastMRI initiative has made its data, models, and code available as an open-source project for other researchers and manufacturers of commercial MRI systems. An MRI examination that takes as much as 30 minutes can be completed in less than five minutes by using fastMRI, making examination time for MRI comparable to that for X-rays or CT scans. However, unlike these imaging techniques, MRI provides incredibly rich information, from enabling views of soft tissues from different perspectives to highlighting small cartilage abnormalities to locating tumors in the abdomen.
“Our new study translates the results from the earlier laboratory-based study and applies it to actual patients,” said Michael P. Recht, MD, the Louis Marx Professor of Radiology and chair of the Department of Radiology at NYU Grossman School of Medicine. “FastMRI has the potential to dramatically change how we do MRI and increase accessibility of MRI to more patients.”
“The price we have paid traditionally for all of that rich information is time,” added Daniel K. Sodickson, MD, PhD, chief of innovation in the Department of Radiology and director of the Center for Advanced Imaging Innovation and Research. “If we can supercharge MRI to approach the speed of CT scans, we can make all of that important information available to everybody.”
Latest MRI News
- PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
- Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
- Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
- World’s Most Powerful MRI Machine Images Living Brain with Unrivaled Clarity
- New Whole-Body Imaging Technology Makes It Possible to View Inflammation on MRI Scan
- Combining Prostate MRI with Blood Test Can Avoid Unnecessary Prostate Biopsies
- New Treatment Combines MRI and Ultrasound to Control Prostate Cancer without Serious Side Effects
- MRI Improves Diagnosis and Treatment of Prostate Cancer
- Combined PET-MRI Scan Improves Treatment for Early Breast Cancer Patients
- 4D MRI Could Improve Clinical Assessment of Heart Blood Flow Abnormalities
- MRI-Guided Focused Ultrasound Therapy Shows Promise in Treating Prostate Cancer
- AI-Based MRI Tool Outperforms Current Brain Tumor Diagnosis Methods
- DW-MRI Lights up Small Ovarian Lesions like Light Bulbs
- Abbreviated Breast MRI Effective for High-Risk Screening without Compromising Diagnostic Accuracy
- New MRI Method Detects Alzheimer’s Earlier in People without Clinical Signs
- MRI Monitoring Reduces Mortality in Women at High Risk of BRCA1 Breast Cancer
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreNuclear Medicine
view channel
New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
Ovarian cancer is the most lethal gynecological cancer, with less than a 30% five-year survival rate for those diagnosed in late stages. Despite surgery and platinum-based chemotherapy being the standard... Read more
AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read moreGeneral/Advanced Imaging
view channel
New AI Method Captures Uncertainty in Medical Images
In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more.jpg)
CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
Coronary artery disease (CAD), one of the leading causes of death worldwide, involves the narrowing of coronary arteries due to atherosclerosis, resulting in insufficient blood flow to the heart muscle.... Read more
Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
Alzheimer's disease (AD), a condition marked by cognitive decline and the presence of beta-amyloid (Aβ) plaques and neurofibrillary tangles in the brain, poses diagnostic challenges. Amyloid positron emission... Read more.jpg)
CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
The rise in the aging population is expected to result in a corresponding increase in the prevalence of vertebral fractures which can cause back pain or neurologic compromise, leading to impaired function... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more