AI System Boosts Radiologist Detection of Intracranial Hemorrhage on CT Scans
By MedImaging International staff writers Posted on 17 Oct 2022 |

Intracranial hemorrhage (ICH) is one of many conditions that can be readily diagnosed from a head computed tomography (CT) scan and has a poor prognosis with only 20% of survivors fully recovering at six-months post-incidence. Its short acquisition time, widespread availability, and ever-decreasing radiation burden, have made the head CT a staple of care worldwide, particularly in the emergency setting. However, the number of acquired CT examinations requiring radiologist interpretation is growing at a rate that outpaces the growth of the radiologist population, which introduces concerns surrounding the presence of errors in imaging-based diagnoses, particularly for pathologies where misdiagnoses may lead to delays in time-sensitive treatment. An erroneous diagnosis is always damaging, but principally for acute pathologies where time plays a critical role in patient outcomes.
Artificial intelligence (AI) technologies, specifically computer vision (CV) algorithms, have continued to expand their applications to the interpretation of various medical imaging modalities, given their ability to rapidly interpret these scans in coordination with their demonstrated strong performance. Despite evidence suggesting that a concerted effort by AI and clinicians can yield higher diagnostic accuracy than either party alone, particularly for inexperienced practitioners, the role of an AI tool as an adjunct to radiologists to reduce human diagnostic error with respect to ICH is not yet widely adopted. Additionally, though algorithms have been constructed to evaluate scans for the presence of an ICH, they treat ICH as a homogenous pathology, when in fact various subtypes of ICH are observed and often managed in differing ways. A new study to evaluate the utility of a novel deep learning algorithm designed to aid radiologist diagnostic performance by identifying the presence of ICH and its respective subtype(s) on a non-contrast head CT scan (NCCT) has found that the tool has potential to improve patient outcomes and reduce misdiagnosis.
In the retrospective, multi-reader, and multi-case study, researchers at the Texas Tech University Health Sciences Center (Lubbock, TX, USA) evaluated the diagnostic accuracy of three board-certified radiologists with and without the aid of the Caire ICH deep-learning system from Caire Health Inc. (Tallahassee, FL, USA). For the study, the researchers specifically obtained 100 ICH-negative NCCTs and 100 individual studies for each ICH subtype: epidural (EDH), subdural (SDH), subarachnoid (SAH), intraparenchymal (IPH), and intraventricular hemorrhage (IVH). Each radiologist interpreted each imaging case independently. After a washout period of 48 hours, the radiologists interpreted the same cases with the support of the deep learning system. The Caire ICH software is a deep-learning tool with a single convolutional neural network and a long short-term memory mechanism that provides information regarding the presence or absence of an intracranial hemorrhage, the subtype(s) of the hemorrhage detected, the full range of slices where the hemorrhage exists, and the four slices on which the hemorrhage can be best viewed.
The researchers found that the system improved inter-reader agreement by an average of 5.76% in a dataset with an ICH prevalence of 74.3%. Accuracy, sensitivity and specificity all increased by 6.15, 4.6 and 10.62%, respectively. Compared to interpretations completed without the use of the system, radiologists detected an additional 18 ICHs on average, while also improving their identification of different ICH subtypes when the tool was utilized.
“This work adds to the evidence that deep-learning strategies may increase the performance of trained radiologists in diagnosing critical findings on head NCCT scans,” the authors wrote. “As we have shown, this strategy may be seamlessly integrated into the radiologists' clinical workflow and potentially expedite the diagnosis and treatment of patients with ICH in resource-rich or resource-limited areas.”
Related Links:
Texas Tech University Health Sciences Center
Caire Health
Latest General/Advanced Imaging News
- New AI Method Captures Uncertainty in Medical Images
- CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
- Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
- CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
- Minimally Invasive Procedure Could Help Patients Avoid Thyroid Surgery
- Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery
- AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning
- Imaging Technology Provides Ground-Breaking New Approach for Diagnosing and Treating Bowel Cancer
- CT Coronary Calcium Scoring Predicts Heart Attacks and Strokes
- AI Model Detects 90% of Lymphatic Cancer Cases from PET and CT Images
- Breakthrough Technology Revolutionizes Breast Imaging
- State-Of-The-Art System Enhances Accuracy of Image-Guided Diagnostic and Interventional Procedures
- Catheter-Based Device with New Cardiovascular Imaging Approach Offers Unprecedented View of Dangerous Plaques
- AI Model Draws Maps to Accurately Identify Tumors and Diseases in Medical Images
- AI-Enabled CT System Provides More Accurate and Reliable Imaging Results
- Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreMRI
view channel
PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more
Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more
Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
Prostate cancer ranks as the most prevalent cancer among men. Over the last decade, the introduction of MRI scans has significantly transformed the diagnosis process, marking the most substantial advancement... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreNuclear Medicine
view channel
New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
Ovarian cancer is the most lethal gynecological cancer, with less than a 30% five-year survival rate for those diagnosed in late stages. Despite surgery and platinum-based chemotherapy being the standard... Read more
AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more