Mammography AI Could Sharply Reduce Radiology Workload
By MedImaging International staff writers Posted on 12 Jul 2021 |

Image: Transpara AI can reduce mammography workload (Photo courtesy of ScreenPoint Medical)
Using artificial intelligence (AI) in breast cancer screening could reduce the workload of radiologists by up to 70% without reducing cancer detection rates, according to a new study.
The study, by researchers at Maimonides Institute for Biomedical Research (IMIBIC; Córdoba, Spain) and ScreenPoint Medical (Nijmegen, the Netherlands), compared a simulated AI triaging strategy using ScreenPoint’s Transpara AI software with double or single reading by radiologists in a retrospective analysis of 15,987 digital breast tomosynthesis (DBT) and digital mammography (DM) images from the Córdoba Tomosynthesis Screening Trial.
The examinations included 98 screening-detected and 15 interval cancers. The results showed that in comparison with double reading of DBT images, AI with DBT would result in 72.5% less workload, non-inferior sensitivity, and a and 16.7% lower recall rate. Similar results were obtained for AI with DM; compared to the original double reading of DM images, AI with DM would result in 29.7% less workload, 25% higher sensitivity, and 27.1% lower recall rate. The study was published on May 4, 2021, in Radiology.
“DBT images can take twice as long for radiologists to read compared with DM. However, with AI, it may be possible to move from using digital mammograms to digital breast tomosynthesis,” said lead author radiologist José Luis Raya-Povedano, MD, of the IMIBIC Breast Cancer Unit. “The workflow of breast cancer screening programs could be improved, given the high workload and the high number of false-positive and false-negative assessments.”
Transpara is based on FusionAI, a combination of pathology, clinical imaging, X-ray physics, and deep learning (DL) techniques, designed to improve mammography reading accuracy, help interpretation of suspicious areas, increase confidence for normal and suspicious cases, and speed up reading of 2D and 3D mammograms.
Related Links:
Maimonides Institute for Biomedical Research
ScreenPoint Medical
The study, by researchers at Maimonides Institute for Biomedical Research (IMIBIC; Córdoba, Spain) and ScreenPoint Medical (Nijmegen, the Netherlands), compared a simulated AI triaging strategy using ScreenPoint’s Transpara AI software with double or single reading by radiologists in a retrospective analysis of 15,987 digital breast tomosynthesis (DBT) and digital mammography (DM) images from the Córdoba Tomosynthesis Screening Trial.
The examinations included 98 screening-detected and 15 interval cancers. The results showed that in comparison with double reading of DBT images, AI with DBT would result in 72.5% less workload, non-inferior sensitivity, and a and 16.7% lower recall rate. Similar results were obtained for AI with DM; compared to the original double reading of DM images, AI with DM would result in 29.7% less workload, 25% higher sensitivity, and 27.1% lower recall rate. The study was published on May 4, 2021, in Radiology.
“DBT images can take twice as long for radiologists to read compared with DM. However, with AI, it may be possible to move from using digital mammograms to digital breast tomosynthesis,” said lead author radiologist José Luis Raya-Povedano, MD, of the IMIBIC Breast Cancer Unit. “The workflow of breast cancer screening programs could be improved, given the high workload and the high number of false-positive and false-negative assessments.”
Transpara is based on FusionAI, a combination of pathology, clinical imaging, X-ray physics, and deep learning (DL) techniques, designed to improve mammography reading accuracy, help interpretation of suspicious areas, increase confidence for normal and suspicious cases, and speed up reading of 2D and 3D mammograms.
Related Links:
Maimonides Institute for Biomedical Research
ScreenPoint Medical
Latest General/Advanced Imaging News
- New AI Method Captures Uncertainty in Medical Images
- CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
- Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
- CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
- Minimally Invasive Procedure Could Help Patients Avoid Thyroid Surgery
- Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery
- AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning
- Imaging Technology Provides Ground-Breaking New Approach for Diagnosing and Treating Bowel Cancer
- CT Coronary Calcium Scoring Predicts Heart Attacks and Strokes
- AI Model Detects 90% of Lymphatic Cancer Cases from PET and CT Images
- Breakthrough Technology Revolutionizes Breast Imaging
- State-Of-The-Art System Enhances Accuracy of Image-Guided Diagnostic and Interventional Procedures
- Catheter-Based Device with New Cardiovascular Imaging Approach Offers Unprecedented View of Dangerous Plaques
- AI Model Draws Maps to Accurately Identify Tumors and Diseases in Medical Images
- AI-Enabled CT System Provides More Accurate and Reliable Imaging Results
- Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreMRI
view channel
PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more
Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more
Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
Prostate cancer ranks as the most prevalent cancer among men. Over the last decade, the introduction of MRI scans has significantly transformed the diagnosis process, marking the most substantial advancement... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreNuclear Medicine
view channel
New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
Ovarian cancer is the most lethal gynecological cancer, with less than a 30% five-year survival rate for those diagnosed in late stages. Despite surgery and platinum-based chemotherapy being the standard... Read more
AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more