Novel Algorithm Shortens MRI Scans to Nearly a Minute
By MedImaging International staff writers Posted on 15 Apr 2019 |

Image: Dr. Stefan Skare’s algorithm improves MRI acquisition times (Photo courtesy of Catarina Thepper / KI).
A new multicontrast magnetic resonance imaging (MRI) technique can cut down the time needed to complete a scan to about 70 seconds, claims a new study.
Developed by researchers at Karolinska Institutet (KI; Solna, Sweden), Karolinska University Hospital (Stockholm, Sweden), GE Healthcare (GE, Little Chalfont, United Kingdom), and other institutions, the echo planar image mix (EPIMix) MRI technique combines contrast T1 -FLAIR, T2 -weighted, diffusion-weighted images (DWI), apparent diffusion coefficient (ADC), T2*-weighted, and T2 -FLAIR images into one multicontrast MRI technique.
To assess if EPIMix has comparable diagnostic performance as routine clinical brain MRI, the researchers conducted a prospective study of a consecutive series of 103 patients' brain MRI from January 2018 to May 2018 using a 1.5T or 3T scanner. Two neuroradiologists assessed both EPIMix and clinical scans and categorized the images as abnormal or normal and described diagnosis, artifacts, diagnostic confidence image quality, and comparison of imaging time. In all, 82 patients were evaluated.
The results revealed that diagnostic performance was comparable between EPIMix and routine clinical MRI, with a sensitivity of 95% and 93%, and a specificity of 100% and 100%, respectively. Disease category match between EPIMix and clinical routine MRI was 90% for one reader and 93% for the other. Imaging time was 78 seconds for EPIMix, as compared to 12 minutes 29 seconds for conventional 3T MRI. Image quality was generally rated lower for EPIMix. The study was published on April 1, 2019, in the Journal of Magnetic Resonance Imaging.
“I have worked with MRI technology for a long time and with the problem of how difficult it is for patients to lie still for the camera. So, one day, I asked myself if there was any way to use rapid echo planar imaging (EPI) with other MRI types needed for brain scans,” said senior author Stefan Skare, PhD, of the KI department of neuroradiology. “In this way, the whole examination is faster and less sensitive to patient movement. Initially, I just wanted to test the concept. I didn't think it would be such a major breakthrough.”
EPI is capable of acquiring an entire MRI in only a fraction of a second; in single-shot EPI, all the spatial-encoding data of an image can be obtained after a single radio-frequency excitation, resulting in high-quality images comparable to conventional MRI, but with major advantages over conventional MRI that include reduced imaging time, decreased motion artifact, and the ability to image rapid physiologic processes of the human body.
Related Links:
Karolinska Institutet
Karolinska University Hospital
Developed by researchers at Karolinska Institutet (KI; Solna, Sweden), Karolinska University Hospital (Stockholm, Sweden), GE Healthcare (GE, Little Chalfont, United Kingdom), and other institutions, the echo planar image mix (EPIMix) MRI technique combines contrast T1 -FLAIR, T2 -weighted, diffusion-weighted images (DWI), apparent diffusion coefficient (ADC), T2*-weighted, and T2 -FLAIR images into one multicontrast MRI technique.
To assess if EPIMix has comparable diagnostic performance as routine clinical brain MRI, the researchers conducted a prospective study of a consecutive series of 103 patients' brain MRI from January 2018 to May 2018 using a 1.5T or 3T scanner. Two neuroradiologists assessed both EPIMix and clinical scans and categorized the images as abnormal or normal and described diagnosis, artifacts, diagnostic confidence image quality, and comparison of imaging time. In all, 82 patients were evaluated.
The results revealed that diagnostic performance was comparable between EPIMix and routine clinical MRI, with a sensitivity of 95% and 93%, and a specificity of 100% and 100%, respectively. Disease category match between EPIMix and clinical routine MRI was 90% for one reader and 93% for the other. Imaging time was 78 seconds for EPIMix, as compared to 12 minutes 29 seconds for conventional 3T MRI. Image quality was generally rated lower for EPIMix. The study was published on April 1, 2019, in the Journal of Magnetic Resonance Imaging.
“I have worked with MRI technology for a long time and with the problem of how difficult it is for patients to lie still for the camera. So, one day, I asked myself if there was any way to use rapid echo planar imaging (EPI) with other MRI types needed for brain scans,” said senior author Stefan Skare, PhD, of the KI department of neuroradiology. “In this way, the whole examination is faster and less sensitive to patient movement. Initially, I just wanted to test the concept. I didn't think it would be such a major breakthrough.”
EPI is capable of acquiring an entire MRI in only a fraction of a second; in single-shot EPI, all the spatial-encoding data of an image can be obtained after a single radio-frequency excitation, resulting in high-quality images comparable to conventional MRI, but with major advantages over conventional MRI that include reduced imaging time, decreased motion artifact, and the ability to image rapid physiologic processes of the human body.
Related Links:
Karolinska Institutet
Karolinska University Hospital
Latest MRI News
- PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
- Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
- Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
- World’s Most Powerful MRI Machine Images Living Brain with Unrivaled Clarity
- New Whole-Body Imaging Technology Makes It Possible to View Inflammation on MRI Scan
- Combining Prostate MRI with Blood Test Can Avoid Unnecessary Prostate Biopsies
- New Treatment Combines MRI and Ultrasound to Control Prostate Cancer without Serious Side Effects
- MRI Improves Diagnosis and Treatment of Prostate Cancer
- Combined PET-MRI Scan Improves Treatment for Early Breast Cancer Patients
- 4D MRI Could Improve Clinical Assessment of Heart Blood Flow Abnormalities
- MRI-Guided Focused Ultrasound Therapy Shows Promise in Treating Prostate Cancer
- AI-Based MRI Tool Outperforms Current Brain Tumor Diagnosis Methods
- DW-MRI Lights up Small Ovarian Lesions like Light Bulbs
- Abbreviated Breast MRI Effective for High-Risk Screening without Compromising Diagnostic Accuracy
- New MRI Method Detects Alzheimer’s Earlier in People without Clinical Signs
- MRI Monitoring Reduces Mortality in Women at High Risk of BRCA1 Breast Cancer
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreNuclear Medicine
view channel
New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
Ovarian cancer is the most lethal gynecological cancer, with less than a 30% five-year survival rate for those diagnosed in late stages. Despite surgery and platinum-based chemotherapy being the standard... Read more
AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read moreGeneral/Advanced Imaging
view channel
New AI Method Captures Uncertainty in Medical Images
In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more.jpg)
CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
Coronary artery disease (CAD), one of the leading causes of death worldwide, involves the narrowing of coronary arteries due to atherosclerosis, resulting in insufficient blood flow to the heart muscle.... Read more
Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
Alzheimer's disease (AD), a condition marked by cognitive decline and the presence of beta-amyloid (Aβ) plaques and neurofibrillary tangles in the brain, poses diagnostic challenges. Amyloid positron emission... Read more.jpg)
CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
The rise in the aging population is expected to result in a corresponding increase in the prevalence of vertebral fractures which can cause back pain or neurologic compromise, leading to impaired function... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more