Plasmonic Patch Boosts Diagnostic Fluorescence Intensity
By MedImaging International staff writers Posted on 18 Jul 2018 |

Image: A high-tech patch utilizes metal nanostructures to increase the fluorescence intensity by 100 times (Photo courtesy of WUSTL).
A new study shows how a high-tech add patch uses metal nanostructures to increase the fluorescent brightness of diagnostic tests one-hundred fold.
Developed by researchers at Washington University School of Medicine (WUSTL; St. Louis, MO, USA) and the Air Force Research Laboratory (AFRL; Wright-Patterson Air Force Base, OH, USA), the plasmonic patch is a flexible, conformal elastomeric film with adsorbed nanostructures that offer a simple and universal method to provide large (up to 100-fold) and uniform fluorescence enhancement on a variety of surfaces, by simply transferring the patch to the surface in question.
According to the researchers, the plasmonic patch can improve the sensitivity and limit of detection of fluorescence-based immunoassays, and represents a fundamental enabling technology to immediately improve the sensitivity of existing disease, biomarker, and application agnostic analytic methodologies. The researchers suggest it could be particularly useful in a microarray chip, which enables simultaneous detection of tens to hundreds of analytes in a single experiment. The study describing the plasmonic patch was published in the July 2018 issue of Light: Science and Applications.
"It's a thin layer of elastic, transparent material with gold nanorods or other plasmonic nanostructures absorbed on the top,” said lead author Jingyi Luan, MSc, a graduate student at WUSTL. “These nanostructures act as antennae; they concentrate light into a tiny volume around the molecules emitting fluorescence. The fluorescence is dramatic, making it easier to visualize. The patch can be imagined to be a magnifying glass for the light.”
“The plasmonic patch will enable the detection of low abundance analytes in combination with conventional detection methodologies, which is the beauty of our approach,” concluded co-senior author Rajesh Naik, PhD, chief scientist of AFRL's 711th Human Performance Wing. “All a researcher or lab tech needs to do is prepare the sample in the usual method, apply the patch over the top, and then scan the sample as usual.”
Fluorescence-based techniques have radically transformed biology and life sciences by unraveling the genomic, transcriptomic, and proteomic signatures of disease development, progression, and response to therapy. However, the occurrence of a “feeble signal” has been a persistent and recurring problem in imaging techniques that rely on fluorescence. Overcoming this fundamental challenge without the use of specialized reagents, equipment, or significant modifications to well-established procedures is a holy grail in the field of biomedical optics.
Related Links:
Washington University School of Medicine
Air Force Research Laboratory
Developed by researchers at Washington University School of Medicine (WUSTL; St. Louis, MO, USA) and the Air Force Research Laboratory (AFRL; Wright-Patterson Air Force Base, OH, USA), the plasmonic patch is a flexible, conformal elastomeric film with adsorbed nanostructures that offer a simple and universal method to provide large (up to 100-fold) and uniform fluorescence enhancement on a variety of surfaces, by simply transferring the patch to the surface in question.
According to the researchers, the plasmonic patch can improve the sensitivity and limit of detection of fluorescence-based immunoassays, and represents a fundamental enabling technology to immediately improve the sensitivity of existing disease, biomarker, and application agnostic analytic methodologies. The researchers suggest it could be particularly useful in a microarray chip, which enables simultaneous detection of tens to hundreds of analytes in a single experiment. The study describing the plasmonic patch was published in the July 2018 issue of Light: Science and Applications.
"It's a thin layer of elastic, transparent material with gold nanorods or other plasmonic nanostructures absorbed on the top,” said lead author Jingyi Luan, MSc, a graduate student at WUSTL. “These nanostructures act as antennae; they concentrate light into a tiny volume around the molecules emitting fluorescence. The fluorescence is dramatic, making it easier to visualize. The patch can be imagined to be a magnifying glass for the light.”
“The plasmonic patch will enable the detection of low abundance analytes in combination with conventional detection methodologies, which is the beauty of our approach,” concluded co-senior author Rajesh Naik, PhD, chief scientist of AFRL's 711th Human Performance Wing. “All a researcher or lab tech needs to do is prepare the sample in the usual method, apply the patch over the top, and then scan the sample as usual.”
Fluorescence-based techniques have radically transformed biology and life sciences by unraveling the genomic, transcriptomic, and proteomic signatures of disease development, progression, and response to therapy. However, the occurrence of a “feeble signal” has been a persistent and recurring problem in imaging techniques that rely on fluorescence. Overcoming this fundamental challenge without the use of specialized reagents, equipment, or significant modifications to well-established procedures is a holy grail in the field of biomedical optics.
Related Links:
Washington University School of Medicine
Air Force Research Laboratory
Latest General/Advanced Imaging News
- New AI Method Captures Uncertainty in Medical Images
- CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
- Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
- CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
- Minimally Invasive Procedure Could Help Patients Avoid Thyroid Surgery
- Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery
- AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning
- Imaging Technology Provides Ground-Breaking New Approach for Diagnosing and Treating Bowel Cancer
- CT Coronary Calcium Scoring Predicts Heart Attacks and Strokes
- AI Model Detects 90% of Lymphatic Cancer Cases from PET and CT Images
- Breakthrough Technology Revolutionizes Breast Imaging
- State-Of-The-Art System Enhances Accuracy of Image-Guided Diagnostic and Interventional Procedures
- Catheter-Based Device with New Cardiovascular Imaging Approach Offers Unprecedented View of Dangerous Plaques
- AI Model Draws Maps to Accurately Identify Tumors and Diseases in Medical Images
- AI-Enabled CT System Provides More Accurate and Reliable Imaging Results
- Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreMRI
view channel
PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more
Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more
Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
Prostate cancer ranks as the most prevalent cancer among men. Over the last decade, the introduction of MRI scans has significantly transformed the diagnosis process, marking the most substantial advancement... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreNuclear Medicine
view channel
New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
Ovarian cancer is the most lethal gynecological cancer, with less than a 30% five-year survival rate for those diagnosed in late stages. Despite surgery and platinum-based chemotherapy being the standard... Read more
AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more