Short-Lived Isotope Opens New Possibilities for Cancer Treatment
By MedImaging International staff writers Posted on 08 Sep 2016 |

Image: The SLAC National Accelerator Laboratory (Photo courtesy of SLAC).
A radioisotope of the element actinium is a promising agent for targeted-α therapy to destroy malignant cells, while minimizing the damage to healthy surrounding tissue.
Developed by researchers at Los Alamos National Laboratory (LANL; NM, USA), and in collaboration with the Stanford Linear Accelerator Center (SLAC) Laboratory (SLAC; Menlo Park, CA, USA), targeted-α therapy is based on the radioisotope actinium-225, which has a relatively short half-life of 10 days and emits powerful alpha particles as it decays to stable bismuth. But targeted-α therapy can only become a reliable cancer treatment if actinium securely binds to a chelator, as the radioisotope is very toxic to healthy tissue.
In an attempt to clarify the limited understanding of actinium chemistry, the researchers used X-ray absorption spectroscopy and molecular dynamics density functional theory to investigate actinium coordination chemistry. They were able to determine information about chemical bonds formed by actinium, including what binds to the element, how many atoms are present, and the distances between them. The researchers will now attempt to engineer a chelator carrier molecule that could safely transport actinium-225 through the body to tumor cells. The study was published on August 17, 2016, in Nature Communications.
“Imagine if someone gave you the element iron and nothing was known. That’s almost the same place we were in with actinium, as far as macroscopic chemistry goes. The Manhattan Project scientists used film to see the X-rays released off the sample,” said study co-author Stosh Kozimor, PhD, an isotope chemist at Los Alamos, “but the radioactivity from actinium darkened the film before they could make meaningful measurements. They were only able to get a fingerprint of the actinium compounds that were suggestive of what formed. Beyond that, there isn’t much information in those measurements.”
Actinium (Ac), discovered in 1899, is a radioactive chemical element with the atomic number 89. It was the first non-primordial radioactive element to be isolated. A soft, silvery-white metal, it reacts rapidly with oxygen and moisture in air, forming a white coating of actinium oxide that prevents further oxidation. One ton of natural uranium in ore contains about 0.2 milligrams of actinium-227. Owing to its scarcity, high price, and radioactivity, actinium has no significant industrial use.
Related Links:
Los Alamos National Laboratory
Stanford Linear Accelerator Center Laboratory
Developed by researchers at Los Alamos National Laboratory (LANL; NM, USA), and in collaboration with the Stanford Linear Accelerator Center (SLAC) Laboratory (SLAC; Menlo Park, CA, USA), targeted-α therapy is based on the radioisotope actinium-225, which has a relatively short half-life of 10 days and emits powerful alpha particles as it decays to stable bismuth. But targeted-α therapy can only become a reliable cancer treatment if actinium securely binds to a chelator, as the radioisotope is very toxic to healthy tissue.
In an attempt to clarify the limited understanding of actinium chemistry, the researchers used X-ray absorption spectroscopy and molecular dynamics density functional theory to investigate actinium coordination chemistry. They were able to determine information about chemical bonds formed by actinium, including what binds to the element, how many atoms are present, and the distances between them. The researchers will now attempt to engineer a chelator carrier molecule that could safely transport actinium-225 through the body to tumor cells. The study was published on August 17, 2016, in Nature Communications.
“Imagine if someone gave you the element iron and nothing was known. That’s almost the same place we were in with actinium, as far as macroscopic chemistry goes. The Manhattan Project scientists used film to see the X-rays released off the sample,” said study co-author Stosh Kozimor, PhD, an isotope chemist at Los Alamos, “but the radioactivity from actinium darkened the film before they could make meaningful measurements. They were only able to get a fingerprint of the actinium compounds that were suggestive of what formed. Beyond that, there isn’t much information in those measurements.”
Actinium (Ac), discovered in 1899, is a radioactive chemical element with the atomic number 89. It was the first non-primordial radioactive element to be isolated. A soft, silvery-white metal, it reacts rapidly with oxygen and moisture in air, forming a white coating of actinium oxide that prevents further oxidation. One ton of natural uranium in ore contains about 0.2 milligrams of actinium-227. Owing to its scarcity, high price, and radioactivity, actinium has no significant industrial use.
Related Links:
Los Alamos National Laboratory
Stanford Linear Accelerator Center Laboratory
Latest Nuclear Medicine News
- New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
- New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
- AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
- Early 30-Minute Dynamic FDG-PET Acquisition Could Halve Lung Scan Times
- New Method for Triggering and Imaging Seizures to Help Guide Epilepsy Surgery
- Radioguided Surgery Accurately Detects and Removes Metastatic Lymph Nodes in Prostate Cancer Patients
- New PET Tracer Detects Inflammatory Arthritis Before Symptoms Appear
- Novel PET Tracer Enhances Lesion Detection in Medullary Thyroid Cancer
- Targeted Therapy Delivers Radiation Directly To Cells in Hard-To-Treat Cancers
- New PET Tracer Noninvasively Identifies Cancer Gene Mutation for More Precise Diagnosis
- Algorithm Predicts Prostate Cancer Recurrence in Patients Treated by Radiation Therapy
- Novel PET Imaging Tracer Noninvasively Identifies Cancer Gene Mutation for More Precise Diagnosis
- Ultrafast Laser Technology to Improve Cancer Treatment
- Low-Dose Radiation Therapy Demonstrates Potential for Treatment of Heart Failure
- New PET Radiotracer Aids Early, Noninvasive Detection of Inflammatory Bowel Disease
- Combining Amino Acid PET and MRI Imaging to Help Treat Aggressive Brain Tumors
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreMRI
view channel
PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more
Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more
Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
Prostate cancer ranks as the most prevalent cancer among men. Over the last decade, the introduction of MRI scans has significantly transformed the diagnosis process, marking the most substantial advancement... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreGeneral/Advanced Imaging
view channel
New AI Method Captures Uncertainty in Medical Images
In the field of biomedicine, segmentation is the process of annotating pixels from an important structure in medical images, such as organs or cells. Artificial Intelligence (AI) models are utilized to... Read more.jpg)
CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
Coronary artery disease (CAD), one of the leading causes of death worldwide, involves the narrowing of coronary arteries due to atherosclerosis, resulting in insufficient blood flow to the heart muscle.... Read more
Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
Alzheimer's disease (AD), a condition marked by cognitive decline and the presence of beta-amyloid (Aβ) plaques and neurofibrillary tangles in the brain, poses diagnostic challenges. Amyloid positron emission... Read more.jpg)
CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
The rise in the aging population is expected to result in a corresponding increase in the prevalence of vertebral fractures which can cause back pain or neurologic compromise, leading to impaired function... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more