New Hand-Held OCT Device to Simplify Early Detection of Retinal Disease
By MedImaging International staff writers Posted on 31 Dec 2013 |

Image: Power grip style (A-B) and camcorder style (C-D) designs of the prototype OCT scanner. Both acquire 3D OCT images of the retina (Photo courtesy of Biomedical Optics Express).

Image: A high-definition OCT image of the retina allows clinicians to noninvasively visualize the 3D structure of key regions, such as the macula (region near the fovea) and optic nerve head, to screen for signs of disease pathology. Shown here is a wide field view (A) as well as detailed vertical cross-sections (B-C-D) and a circular cross-section (E) (Photo courtesy of Biomedical Optics Express.)
A novel hand-held optical device quickly scans a patient’s entire retina and so could aid in detecting early signs of a host of retinal diseases, including diabetic retinopathy, glaucoma, and macular degeneration.
A team at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) describes their new ophthalmic-screening instrument in a report by Lu, C.D. et al., published by The Optical Society (Washington DC, USA), December 20, 2013, in the journal Biomedical Optics Express. Although others have created hand-held devices using similar technology, the new design is the first to combine cutting-edge technologies such as ultrahigh-speed 3D imaging, a tiny micro-electromechanical systems (MEMS) mirror for scanning, and a technique to correct for unintentional movement by the patient. These innovations should allow clinicians to collect comprehensive data with just one measurement.
Many eye diseases should be detected and treated long before any visual symptoms arise, but few people visit eye specialists regularly. The MIT group, in collaboration with the University of Erlangen and Praevium/Thorlabs, has developed this portable instrument to improve public access to eye care. "Hand-held instruments can enable screening a wider population outside the traditional points of care," said Prof. James Fujimoto, MIT. They can be used at a primary-care physician's office or even in the developing world.
The instrument uses optical coherence tomography (OCT), which sends beams of infrared light into the eye and onto the retina. Echoes of this light return to the instrument, which uses interferometry to measure changes in the time delay and magnitude of the returning light echoes, revealing the cross-sectional tissue structure of the retina, similar to radar or ultrasound imaging. Tabletop OCT imagers have become a standard of care in ophthalmology, and current generation hand-held scanners are used for imaging infants and monitoring retinal surgery. The MIT group turned a typically large instrument into a portable size by using a MEMS mirror to scan the OCT imaging beam. The new device can acquire images comparable in quality to the conventional tabletop OCT instruments used by ophthalmologists.
To deal with the motion instability of a hand-held device, the instrument takes multiple 3D images at high speeds, scanning one particular volume of the eye many times but with different scanning directions. This makes it possible to correct for distortions due to motion of the operator’s hand or the subject’s eye.
The next step, said Prof. Fujimoto, is to evaluate the technology in clinical settings; however, the device is still expensive. "The hand-held platform allows the diagnosis or screening to be performed in a much wider range of settings,” said Prof. Fujimoto. He envisions that in the future hand-held OCT technology can be used in many other medical specialties beyond ophthalmology, such as in applications ranging from surgical guidance to military medicine.
Related Links:
Massachusetts Institute of Technology
The Optical Society
A team at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) describes their new ophthalmic-screening instrument in a report by Lu, C.D. et al., published by The Optical Society (Washington DC, USA), December 20, 2013, in the journal Biomedical Optics Express. Although others have created hand-held devices using similar technology, the new design is the first to combine cutting-edge technologies such as ultrahigh-speed 3D imaging, a tiny micro-electromechanical systems (MEMS) mirror for scanning, and a technique to correct for unintentional movement by the patient. These innovations should allow clinicians to collect comprehensive data with just one measurement.
Many eye diseases should be detected and treated long before any visual symptoms arise, but few people visit eye specialists regularly. The MIT group, in collaboration with the University of Erlangen and Praevium/Thorlabs, has developed this portable instrument to improve public access to eye care. "Hand-held instruments can enable screening a wider population outside the traditional points of care," said Prof. James Fujimoto, MIT. They can be used at a primary-care physician's office or even in the developing world.
The instrument uses optical coherence tomography (OCT), which sends beams of infrared light into the eye and onto the retina. Echoes of this light return to the instrument, which uses interferometry to measure changes in the time delay and magnitude of the returning light echoes, revealing the cross-sectional tissue structure of the retina, similar to radar or ultrasound imaging. Tabletop OCT imagers have become a standard of care in ophthalmology, and current generation hand-held scanners are used for imaging infants and monitoring retinal surgery. The MIT group turned a typically large instrument into a portable size by using a MEMS mirror to scan the OCT imaging beam. The new device can acquire images comparable in quality to the conventional tabletop OCT instruments used by ophthalmologists.
To deal with the motion instability of a hand-held device, the instrument takes multiple 3D images at high speeds, scanning one particular volume of the eye many times but with different scanning directions. This makes it possible to correct for distortions due to motion of the operator’s hand or the subject’s eye.
The next step, said Prof. Fujimoto, is to evaluate the technology in clinical settings; however, the device is still expensive. "The hand-held platform allows the diagnosis or screening to be performed in a much wider range of settings,” said Prof. Fujimoto. He envisions that in the future hand-held OCT technology can be used in many other medical specialties beyond ophthalmology, such as in applications ranging from surgical guidance to military medicine.
Related Links:
Massachusetts Institute of Technology
The Optical Society
Latest General/Advanced Imaging News
- New AI Method Captures Uncertainty in Medical Images
- CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease
- Novel Blood Test Could Reduce Need for PET Imaging of Patients with Alzheimer’s
- CT-Based Deep Learning Algorithm Accurately Differentiates Benign From Malignant Vertebral Fractures
- Minimally Invasive Procedure Could Help Patients Avoid Thyroid Surgery
- Self-Driving Mobile C-Arm Reduces Imaging Time during Surgery
- AR Application Turns Medical Scans Into Holograms for Assistance in Surgical Planning
- Imaging Technology Provides Ground-Breaking New Approach for Diagnosing and Treating Bowel Cancer
- CT Coronary Calcium Scoring Predicts Heart Attacks and Strokes
- AI Model Detects 90% of Lymphatic Cancer Cases from PET and CT Images
- Breakthrough Technology Revolutionizes Breast Imaging
- State-Of-The-Art System Enhances Accuracy of Image-Guided Diagnostic and Interventional Procedures
- Catheter-Based Device with New Cardiovascular Imaging Approach Offers Unprecedented View of Dangerous Plaques
- AI Model Draws Maps to Accurately Identify Tumors and Diseases in Medical Images
- AI-Enabled CT System Provides More Accurate and Reliable Imaging Results
- Routine Chest CT Exams Can Identify Patients at Risk for Cardiovascular Disease
Channels
Radiography
view channel
Novel Breast Imaging System Proves As Effective As Mammography
Breast cancer remains the most frequently diagnosed cancer among women. It is projected that one in eight women will be diagnosed with breast cancer during her lifetime, and one in 42 women who turn 50... Read more
AI Assistance Improves Breast-Cancer Screening by Reducing False Positives
Radiologists typically detect one case of cancer for every 200 mammograms reviewed. However, these evaluations often result in false positives, leading to unnecessary patient recalls for additional testing,... Read moreMRI
view channel
PET/MRI Improves Diagnostic Accuracy for Prostate Cancer Patients
The Prostate Imaging Reporting and Data System (PI-RADS) is a five-point scale to assess potential prostate cancer in MR images. PI-RADS category 3 which offers an unclear suggestion of clinically significant... Read more
Next Generation MR-Guided Focused Ultrasound Ushers In Future of Incisionless Neurosurgery
Essential tremor, often called familial, idiopathic, or benign tremor, leads to uncontrollable shaking that significantly affects a person’s life. When traditional medications do not alleviate symptoms,... Read more
Two-Part MRI Scan Detects Prostate Cancer More Quickly without Compromising Diagnostic Quality
Prostate cancer ranks as the most prevalent cancer among men. Over the last decade, the introduction of MRI scans has significantly transformed the diagnosis process, marking the most substantial advancement... Read moreUltrasound
view channel
Deep Learning Advances Super-Resolution Ultrasound Imaging
Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected... Read more
Novel Ultrasound-Launched Targeted Nanoparticle Eliminates Biofilm and Bacterial Infection
Biofilms, formed by bacteria aggregating into dense communities for protection against harsh environmental conditions, are a significant contributor to various infectious diseases. Biofilms frequently... Read moreNuclear Medicine
view channel
New SPECT/CT Technique Could Change Imaging Practices and Increase Patient Access
The development of lead-212 (212Pb)-PSMA–based targeted alpha therapy (TAT) is garnering significant interest in treating patients with metastatic castration-resistant prostate cancer. The imaging of 212Pb,... Read more
New Radiotheranostic System Detects and Treats Ovarian Cancer Noninvasively
Ovarian cancer is the most lethal gynecological cancer, with less than a 30% five-year survival rate for those diagnosed in late stages. Despite surgery and platinum-based chemotherapy being the standard... Read more
AI System Automatically and Reliably Detects Cardiac Amyloidosis Using Scintigraphy Imaging
Cardiac amyloidosis, a condition characterized by the buildup of abnormal protein deposits (amyloids) in the heart muscle, severely affects heart function and can lead to heart failure or death without... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Bayer and Google Partner on New AI Product for Radiologists
Medical imaging data comprises around 90% of all healthcare data, and it is a highly complex and rich clinical data modality and serves as a vital tool for diagnosing patients. Each year, billions of medical... Read more